LTC1345 Single Supply V.35 Transceiver FEATURES DESCRIPTIO n Single Chip Provides All V.35 Differential Clock The LTC 1345 is a single chip transceiver that provides the and Data Signals differential clock and data signals for a V.35 interface from n Operates From Single 5V Supply a single 5V supply. Combined with an external resistor n Software Selectable DTE or DCE Configuration termination network and an LT 1134A RS232 transceiver n Transmitters and Receivers Will Withstand for the control signals, the LTC1345 forms a complete low Repeated 10kV ESD Pulses power DTE or DCE V.35 interface port operating from a n Shutdown Mode Reduces I to 1m A Typ single 5V supply. CC n 10MBaud Transmission Rate The LTC1345 features three current output differential n Transmitter Maintains High Impedance When transmitters, three differential receivers, and a charge Disabled, Shut Down, or with Power Off pump. The transceiver can be configured for DTE or DCE n Meets CCITT V.35 Specification operation or shut down using two Select pins. In the n Transmitters are Short-Circuit Protected Shutdown mode, the supply current is reduced to 1m A. U The transceiver operates up to 10Mbaud. All transmitters APPLICATIO S feature short-circuit protection and a Receiver Output Enable pin allows the receiver outputs to be forced into a n Modems high impedance state. Both transmitter outputs and re- n Telecommunications ceiver inputs feature 10kV ESD protection. The charge n Data Routers pump features a regulated V output using three external EE 1m F capacitors. , LTC and LT are registered trademarks of Linear Technology Corporation. TYPICAL APPLICATIO Clock and Data Signals for V.35 Interface 1m F 1m F 1mF1m F DTE DCE V V CC1 CC2 5V 5V 4 2 1 28 28 1 2 4 3 27 27 3 BI BI LTC1345 LTC1345 1m F 1m F 1m F 1m F 627T500/1250 627T500/1250 TXD (103) 26 1 12 18 6 12 DX T T RX 25 2 11 17 SCTE (113) 24 3 10 16 7 13 DX T T RX 23 4 9 15 TXC (114) 20 14 1 26 6 11 DX RX T T 19 13 2 25 RXC (115) 18 12 3 24 12 7 DX RX T T 17 4 23 11 RXD (104) 16 10 5 22 50W 125W 8 13 DX = RX T T T 15 9 6 21 50W 5 7 7 5 BI TECHNOLOGIES GND (102) 9 10 14 8 8 9 10 14 627T500/1250 (SOIC) OR 899TR50/125 (DIP) LTC1345 TA01 V V CC1 CC2 1 U ULTC1345 UUW ABSOLUTE AXI U RATI GS PACKAGE/ORDER I FOR ATIO (Note 1) TOP VIEW ORDER PART Supply Voltage, V .................................................. 6V CC + NUMBER C2 1 28 C2 Input Voltage + C1 2 27 V EE Transmitters ........................... 0.3V to (V + 0.3V) CC LTC1345CNW V 3 26 Y1 CC Receivers............................................... 18V to 18V LTC1345CSW C1 4 25 Z1 S1, S2, OE ............................... 0.3V to (V + 0.3V) CC LTC1345INW GND 5 24 Y2 Output Voltage LTC1345ISW T1 6 23 Z2 Transmitters .......................................... 18V to 18V T2 7 22 Y3 Receivers................................ 0.3V to (V + 0.3V) CC T3 8 21 Z3 V ........................................................ 10V to 0.3V EE S1 9 20 B3 Short-Circuit Duration S2 10 19 A3 Transmitter Output ..................................... Indefinite R3 11 18 B2 Receiver Output .......................................... Indefinite R2 12 17 A2 V ................................................................. 30 sec R1 13 16 B1 EE Operating Temperature Range OE 14 15 A1 Commercial ............................................ 0 C to 70 C NW PACKAGE SW PACKAGE 28-LEAD PDIP 28-LEAD PLASTIC SO Industrial ........................................... 40 C to 85 C THREE V.35 TRANSMITTERS AND THREE RECEIVERS Storage Temperature Range ................ 65 C to 150 C T = 125 C, q = 56 C/W (NW) JMAX JA Lead Temperature (Soldering, 10 sec)................. 300 C T = 125 C, q = 65 C/W (SW) JMAX JA Consult factory for Military grade parts. DC ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full operating temperature range, otherwise specifications are at T = 25 C. V = 5V 5% (Notes 2, 3), unless otherwise specified. A CC SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS V Transmitter Differential Output Voltage Figure 1, 4V V 4V l 0.44 0.55 0.66 V OD OS V Transmitter Common-Mode Output Voltage Figure 1, V = 0V l 0.6 0 0.6 V OC OS I Transmitter Output High Current V = 0V l 12.6 11 9.4 mA OH Y, Z I Transmitter Output Low Current V = 0V l 9.4 11 12.6 mA OL Y, Z I Transmitter Output Leakage Current S1 = S2 = 0V, 5V V 5V l 1 100 m A OZ Y, Z R Transmitter Output Impedance 2V V 2V 100 kW O Y, Z V Differential Receiver Input Threshold Voltage 7V (V + V )/2 7V l 25 200 mV TH A B D V Receiver Input Hysterisis 7V (V + V )/2 7V 50 mV TH A B I Receiver Input Current (A, B) 7V V 7V l 0.4 mA IN A, B R Receiver Input Impedance 7V V 7V l 17.5 30 kW IN A, B V Receiver Output High Voltage I = 4mA, V = 0.2V l 3 4.5 V OH O B, A V Receiver Output Low Voltage I = 4mA, V = 0.2V l 0.2 0.4 V OL O B, A I Receiver Output Short-Circuit Current 0V V V l785 mA OSR O CC I Receiver Three-State Output Current S1 = S2 = 0V, 0V V V l 10 m A OZR O CC V Logic Input High Voltage T, S1, S2, OE l2V IH V Logic Input Low Voltage T, S1, S2, OE l 0.8 V IL I Logic Input Current T, S1, S2, OE l 10 m A IN I V Supply Current Figure 1, V = 0, S1 = S2 = HIGH l 118 170 mA CC CC OS No Load, S1 = S2 = HIGH l 19 30 mA Shutdown, S1 = S2 = 0V l 1 100 m A V V Voltage No Load, S1 = S2 = HIGH 5.5 V EE EE 2 U WWW