VUE 50 V = 1200 V Three Phase RRM I = 50 A dAV Rectifier Bridge t = 40 ns rr 5 4 1/2 V V Type 2 RSM RRM 1 VV 10 8 1200 1200 VUE 50-12NO1 6 10 8 4/5 6 Symbol Test Conditions Maximum Ratings Features Package with DCB ceramic base plate I T = 85 C, module 50 A dAV K Isolation voltage 3600 V~ I T = 45 C t = 10 ms (50 Hz), sine 200 A Planar passivated chips FSM VJ V = 0 t = 8.3 ms (60 Hz), sine 210 A R Leads suitable for PC board soldering Creeping and creepage-distance T = T t = 10 ms (50 Hz), sine 185 A VJ VJM V = 0 t = 8.3 ms (60 Hz), sine 195 A fulfils UL 508/CSA 22.2NO14 and R VDE 0160 requirements 2 2 I t T = 45 C t = 10 ms (50 Hz), sine 200 A s VJ Epoxy meet UL94V-O 2 V = 0 t = 8.3 ms (60 Hz), sine 180 A s R 2 T = T t = 10 ms (50 Hz), sine 170 A s VJ VJM 2 V = 0 t = 8.3 ms (60 Hz), sine 160 A s R Applications Supplies for DC power equipment T -40...+150 C VJ Input rectifiers for PWM inverter T 150 C VJM T -40...+125 C Output filter for PWM inverter stg V 50/60 Hz, RMS t = 1 min 3000 V~ ISOL Advantages I 1 mA t = 1 s 3600 V~ ISOL Reduced EMI/RFI M Mounting torque (M5) 2 - 2.5 Nm Easy to mount with two screws d (10-32UNF) 18-22 lb.in. Space and weight savings Weight typ. 35 g Improved temperature and power cycling Dimensions in mm (1 mm = 0.0394 ) Symbol Test Conditions Characteristic Values typ. max I V = V T = 25 C 0.75 mA R R RRM VJ V = 0.8 V T = 125 C47mA R RRM VJ V I = 30 A T = 25 C 2.55 V F F VJ V For power-loss calculations only 1.65 V T0 r 18.2 m T R per diode, 120 rect. 1.5 K/W thJS per module, 120 rect. 0.25 K/W I I = 30 A, -di /dt = 240 A/ s1618A RM F F V = 540 V, L 0.05 H, T = 100 C R VJ t I = 1 A -di/dt = 100 A/ s V = 30 V, T = 25 C40 60ns rr F R VJ d Creeping distance on surface 12.7 mm S d Creepage distance in air 9.4 mm A 2 a Max. allowable acceleration 50 m/s Data according to IEC 60747 and refer to a single diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions. Use output terminals in parallel connections 2000 IXYS All rights reserved 1 - 2VUE 50 70 60 50 A A A T =100C VJ 60 V = 540V 50 R 40 max. I =30A 50 F 40 I I =60A RM F I I F T = 25C dAVM 30 VJ I =30A F 40 T =150C VJ I =15A F 30 30 20 20 typ. 20 10 10 10 0 0 0 V C A/ms 012 34 0 25 50 75 100 125 150 0 200 400 600 V T -di /dt F S F Fig. 1 Forward current Fig. 2 Maximum forward current at Fig. 3 Typical peak reverse current versus voltage drop per diode. heatsink temperature T . versus -di /dt. S F 1.4 1.2 100 3000 T =100C V VJ s ns V =540 V 1.2 R 1.0 80 2400 1.0 V FR I =30A 0.8 F V t FR rr I max. I =60A K RM F f 60 1800 t fr 0.8 I =30A F 0.6 I =15A F 0.6 40 1200 t rr 0.4 t fr 0.4 20 T =125C 600 VJ 0.2 0.2 I =30A F typ. 0.0 0.0 0 0 C A/ms A/ms 040 80 120 160 0 200 400 600 0 200 400 600 T di /dt VJ -di /dt F F Fig. 4 Dynamic parameters versus Fig. 5 Typical recovery time Fig. 6 Typical peak forward voltage and junction temperature. versus -di /dt. forward recovery time versus -di /dt. F F 2.0 300 R (K/W) thSA W K/W 0.2 0.5 250 1.0 1.5 1.5 200 2.0 Z thJS 4.0 R t thJSi i 6.0 1.0 150 0.05 0.04 0.2 0.07 0.75 0.13 100 0.5 0.2 0.5 50 0.0 0 s 0.001 0.01 0.1 1 10 0 10 20304050 A 0 25 50 75 100 1C25 150 I T t dAVM A Fig. 7 Transient thermal impedance junction to heatsink Fig. 8 Power dissipation versus direct output current and ambient temperature 2000 IXYS All rights reserved 2 - 2