NTE454 MOSFET, NCh, Dual Gate, TV UHF/RF Amp, Gate Protected TO72 Type Package Description: The NTE454 is a depletion mode dual gate MOSFET transistor designed for VHF amplifier and mixer applications. D Features: G2 Low Reverse Transfer Capacitance C = 0.03pf (Max) rss High Forward Transfer Admittance y = 020 mmhos fe S, Case G1 Diode Protected Gates Absolute Maximum Ratings: Drain Source Voltage, V ....................................................... 20Vdc DSX DrainGate Voltage, V , V ................................................... 30Vdc DG1 DG2 Gate Current, I , I .......................................................... 10mAdc G1 G2 Drain Current Continuous, I .................................................... 60mAdc D Total Power Dissipation (T = +25 C), P .......................................... 360mW A D Derate above 25 C ..................................................... 2.4mW/ C Total Power Dissipation (T = +25 C), P ......................................... 1.2Watt C D Derate above 25 C ..................................................... 8.0mW/ C Storage Channel Temperature Range, T .................................. 65 to +200 C stg Junction Temperature Range, T ........................................... 65 to +175 C J Lead Temperature, 1/16 from Seated Surface for 10 Seconds, T ..................... +300 C L Rev. 1013Electrical Characteristics: (T = 25 C unless otherwise noted) A Characteristics Symbol Test Conditions Min Typ Max Unit OFF CHARACTERISTICS DrainSource Breakdown V I = 10 Adc, V = 0, 20 Vdc (BR)DSX D 5 Voltage V = V = 5.0Vdc GIS G25 Gate 1= Source Breakdown V I = 10mAdc, V = V = 0 6.0 12 30 Vdc (BR)G1SO G1 GIS DS Voltage (Note 1) Gate 2Source Breakdown V I = 10mAdc, V = V = 0 5.0 12 30 Vdc (BR)G2SO G2 G15 D5 Voltage (Note 1) Gate 1 to Source Cutoff Voltage V V = 15Vdc, V = 4.0Vdc, 0.5 1.5 5.0 Vdc GIS(off) DS G2S I = 20 Adc D Gate 2 to Source Cutoff Voltage V V = 15Vdc, V = 0, 0.2 1.4 5.0 Vdc G2S(off) DS G15 I = 20 Adc D V = 5.0Vdc, V = V = 0 0.04 10 nAdc Gate 1 Leakage Current I GIS G2S DS G1SS V = 5.0Vdc, V = V = 0, 10 Adc G2S G2S DS T = 150 C A V = 5.0Vdc, V = V = 0 0.05 10 nAdc Gate 2 Leakage Current I G2S GIS DS G2SS V = 5.0Vdc, V = V = 0, 10 Adc G2S GIS DS T = 150 C A ON CHARACTERISTICS ZeroGate Voltage Drain I V = 15Vdc, V = 0, mAdc 6.0 13 30 DSS DS GIS Current (Note 2) V = 4.0Vdc G25 SMALLSIGNAL CHARACTERISTICS Forward Transfer Admittance y V = 15Vdc, V = 4.0Vdc, mmhos 8.0 12.8 20 fe DS G2S (Note 3) V = 0, f = 1.0kH GIS Z Input Capacitance C V = 15Vdc, V = 4.0Vdc, 3.3 pF iss DS G2S I = I , f = 1.0MH D DSS Z Output Capacitance C V = 15Vdc, V = 4.0Vdc, 1.7 pF oss DS G2S I = I , f = 1.0MH D DSS Z Reverse Transfer Capacitance C V = 15Vdc, V = 4.0Vdc, 0.005 0.014 0.03 pF rss DS G2S I = 10mAdc, f = 1.0MH D Z FUNCTIONAL CHARACTERISTICS Noise Figure NF V = 18Vdc, V = 7.0Vdc, 1.8 4.5 dB DD GG f = 200MH Z Common Source Power Gain G V = 18Vdc, V = 7.0Vdc, 15 20 25 dB ps DD GG f = 200MH Z Bandwidth BW V = 18Vdc, V = 7.0Vdc, 5.0 9.0 MH DD GG Z f = 200MH Z Gain Control Gate Supply V V = 18Vdc, G = 30dB, 0 1.0 3.0 Vdc GG(GC) DD ps Voltage (Note 4) f = 200MH Z Note 1. All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate voltage limiting network is functioning properly. Note 2. Pulse Test: Pulse Width = 300 s, Duty Cycle 2.0%. Note 3. This parameter must be measured with bias voltages supplied for less than 6 seconds to avoid overheating. Note 4. G is defined as the change in G from the values at V = 7.0V power gain conversion. ps pe GG