V 650 V
DS
I @ 25C 36 A
D
C3M0060065J
R 60 m
DS(on)
Silicon Carbide Power MOSFET
TM
C3M MOSFET Technology
N-Channel Enhancement Mode
Features Package
TAB
Drain
rd
3 Generation SiC MOSFET technology
Low inductance package with driver source pin
7mm of creepage distance between drain and source
High blocking voltage with low on-resistance
High speed switching with low capacitances
Fast intrinsic diode with low reverse recovery (Qrr)
Halogen free, RoHS compliant
Drain
Benefits
(TAB)
1 2 3 4 5 6 7
G KS S S S S S
Higher system efficiency
Reduced cooling requirements
Increased power density
Gate
Increased system switching frequency
(Pin 1)
Easy to parallel and simple to drive
Driver Power
Enable new hard switching PFC topologies (Totem-Pole)
Source Source
(Pin 2) (Pin 3,4,5,6,7)
Applications
Part Number Package Marking
EV charging
Server power supplies
C3M0060065J TO-263-7 C3M0060065J
Solar PV inverters
UPS
DC/DC converters
Maximum Ratings (T = 25 C unless otherwise specified)
C
Symbol Parameter Value Unit Test Conditions Note
V = 0 V, I = 100 A
V Drain - Source Voltage 650 V GS D
DSmax
V Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note: 1
GSmax
Gate - Source Voltage (static) -4/+15 V Static Note: 2
V
GSop
36
V = 15 V, T = 25C
GS C
Continuous Drain Current A Fig. 19
I
D
26
V = 15 V, T = 100C
GS C
Pulsed Drain Current 53 A
I Pulse width t limited by T
D(pulse)
jmax
P
P Power Dissipation 136 W T =25C, T = 175 C Fig. 20
C J
D
-40 to
T , T Operating Junction and Storage Temperature C
J stg
+175
T Solder Temperature 260 C 1.6mm (0.063) from case for 10s
L
Note (1): When using MOSFET Body Diode V = -4V/+19V
GSmax
Note (2): MOSFET can also safely operate at 0/+15 V
1 C3M0060065J Rev. B, 02-2020Electrical Characteristics (T = 25C unless otherwise specified)
C
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V Drain-Source Breakdown Voltage 650 V V = 0 V, I = 100 A
(BR)DSS GS D
1.8 2.3 3.6 V = V , I = 5 mA
V DS GS D
VGS(th) Gate Threshold Voltage Fig. 11
1.9 V V = V , I = 5 mA, T = 175C
DS GS D J
I Zero Gate Voltage Drain Current 1 50 A V = 650 V, V = 0 V
DSS DS GS
I Gate-Source Leakage Current 10 250 nA V = 15 V, V = 0 V
GSS GS DS
42 60 79 V = 15 V, I = 13.2 A
GS D
Fig. 4,
R Drain-Source On-State Resistance m
DS(on)
5,6
80 VGS = 15 V, ID = 13.2 A, TJ = 175C
10 VDS= 20 V, IDS= 13.2 A
g Transconductance S Fig. 7
fs
9 V = 20 V, I = 13.2 A, T = 175C
DS DS J
C Input Capacitance 1020
iss
V = 0 V, V = 600 V
GS DS
Fig. 17,
Coss Output Capacitance 80 pF
f = 1 MHz
18
VAC = 25 mV
Crss Reverse Transfer Capacitance 9
C Effective Output Capacitance (Energy Related) 95
o(er)
pF V = 0 V, V = 0V to 400 V Note 3
GS DS
C Effective Output Capacitance (Time Related) 132
o(tr)
E C Stored Energy 15 J V = 600 V, 1 MHz Fig. 16
oss oss DS
V = 400 V, V = -4 V/15 V, I = 13.2 A,
DS GS
E Turn-On Switching Energy (Body Diode) 41 D
ON
R = 2.5, L= 135 H, T = 175C
J
J Fig. 25
G(ext)
E Turn Off Switching Energy (Body Diode) 5
OFF
FWD = Internal Body Diode of MOSFET
t Turn-On Delay Time 9
d(on)
V = 400 V, V = -4 V/15 V
DD GS
t Rise Time 8
r
I = 13.2 A, R = 2.5 , L= 135 H
D G(ext)
ns Fig. 26
Timing relative to V
DS
td(off) Turn-Off Delay Time 17
Inductive load
tf Fall Time 6
,
R Internal Gate Resistance 3 f = 1 MHz V = 25 mV
G(int) AC
Q Gate to Source Charge 14
gs
V = 400 V, V = -4 V/15 V
DS GS
I = 13.2 A
Qgd Gate to Drain Charge 14 D
nC Fig. 12
Per IEC60747-8-4 pg 21
Q Total Gate Charge 46
g
Note (3): Co(er), a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V
o(tr)
C , a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V
2 C3M0060065J Rev. B, 02-2020