V 650 V DS I 25C 21 A D C3M0120065J R 120 m DS(on) Silicon Carbide Power MOSFET TM C3M MOSFET Technology N-Channel Enhancement Mode Features Package TAB Drain rd 3 Generation SiC MOSFET technology Low inductance package with driver source pin 7mm of creepage distance between drain and source High blocking voltage with low on-resistance High speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant Benefits Drain (TAB) 1 2 3 4 5 6 7 G KS S S S S S Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency Gate Easy to parallel and simple to drive (Pin 1) Enable new hard switching PFC topologies (Totem-Pole) Driver Power Source Source (Pin 2) (Pin 3,4,5,6,7) Applications Solar inverters DC/DC converters Part Number Package Marking Switch Mode Power Supplies EV battery chargers C3M0120065J TO-263-7 C3M0120065J UPS Maximum Ratings Symbol Parameter Value Unit Note 650 V V Drain - Source Voltage, T = 25 C DSS C Gate - Source voltage (Under transient events < 100 ns) -8/+19 V Fig. 28 V GS Continuous Drain Current, V = 15 V, T = 25C 21 GS C A Fig. 19 I D Continuous Drain Current, VGS = 15 V, TC = 100C 15 Pulsed Drain Current, Pulse width t limited by T 51 A I jmax D(pulse) P Power Dissipation, T =25C, T = 175 C 86 W Fig. 20 P C J D -40 to Operating Junction and Storage Temperature C T , T J stg +175 Solder Temperature, 1.6mm (0.063) from case for 10s 260 C T L 1 C3M0120065J Rev. 1, 01-2021Electrical Characteristics (T = 25C unless otherwise specified) C Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V Drain-Source Breakdown Voltage 650 V V = 0 V, I = 100 A (BR)DSS GS D V Gate-Source Recommended Turn-On Voltage 15 V GSon Static Fig. 29 V Gate-Source Recommended Turn-Off Voltage -4 V GSoff 1.8 2.3 3.6 V VDS = VGS, ID = 1.86 mA VGS(th) Gate Threshold Voltage Fig. 11 1.9 V VDS = VGS, ID = 1.86 mA, TJ = 175C IDSS Zero Gate Voltage Drain Current 1 50 A VDS = 650 V, VGS = 0 V I Gate-Source Leakage Current 10 250 nA V = 15 V, V = 0 V GSS GS DS 120 157 V = 15 V, I = 6.76 A GS D Fig. 4, R Drain-Source On-State Resistance m DS(on) 5,6 168 V = 15 V, I = 6.76 A, T = 175C GS D J 5.0 V = 20 V, I = 6.76 A DS DS gfs Transconductance S Fig. 7 4.9 VDS= 20 V, IDS= 6.76 A, TJ = 175C Ciss Input Capacitance 640 V = 0 V, V = 0V to 400 V GS DS Fig. 17, C Output Capacitance 45 oss F = 1 Mhz 18 C Reverse Transfer Capacitance 2.3 rss pF VAC = 25 mV Co(er) Effective Output Capacitance (Energy Related) 57 Note: 1 VGS = 0 V, VDS = 0V to 400 V Co(tr) Effective Output Capacitance (Time Related) 79 Note: 1 = 1 Mhz E C Stored Energy 4.3 J V = 400 V, F Fig. 16 oss oss DS V = 400 V, V = -4 V/15 V, I = 6.76 A, DS GS E Turn-On Switching Energy (Body Diode) 28 D ON R = 10 , L= 237 H, T = 175C J G(ext) J Fig. 25 E Turn Off Switching Energy (Body Diode) 6 OFF FWD = Internal Body Diode of MOSFET t Turn-On Delay Time 8 d(on) V = 400 V, V = -4 V/15 V DD GS t Rise Time 9 r I = 6.76 A, R = 10 D G(ext) ns Fig. 26 Timing relative to V DS t Turn-Off Delay Time 18 d(off) Inductive load t Fall Time 9 f , RG(int) Internal Gate Resistance 6 f = 1 MHz VAC = 25 mV Q Gate to Source Charge 8 gs VDS = 400 V, VGS = -4 V/15 V Q Gate to Drain Charge 7 gd nC I = 6.76 A Fig. 12 D Per IEC60747-8-4 pg 21 Q Total Gate Charge 26 g o(er) Note (1): C , a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V Co(tr), a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V 2 C3M0120065J Rev. 1, 01-2021